

AI in Pharma Market Access: Transforming Workflows and Strategy

AI is no longer just a future concept in pharma market access – it's here now, embedding into daily workflows of Market Access teams. Pharmaceutical companies are facing intense pressure from payers and regulators (e.g. shifts toward value-based healthcare, price negotiations, and cost controls) and must gather ever more robust evidence to justify pricing and reimbursement ¹ ². In response, many are turning to artificial intelligence to accelerate data analysis and decision-making. While AI adoption in pricing and market access has lagged behind its explosive use in drug R&D, momentum is rapidly building ³. Global pharma AI investment is soaring (projected to reach ~\$22–25 billion by 2027–2030 ⁴), signaling that AI-driven transformation is a strategic imperative across the industry. Market access leaders are beginning to see real-world examples of AI streamlining their work – from developing value dossiers to setting smarter pricing strategies – and are preparing for broader AI integration in the near future ⁵. Below, we explore current AI use cases in market access, the key opportunities and challenges they present, how teams can prepare for an AI-driven future, and the regulatory and ethical considerations to keep in mind.

AI Use Cases in Market Access Today

AI is being applied across a range of market access activities. Rather than focusing on specific tools, it's useful to look at **major use cases** emerging in practice:

- **Evidence Dossiers and Literature Reviews:** Natural language processing (NLP) and generative AI are speeding up the creation and updating of Global Value Dossiers (GVDs) and health technology assessment submissions. AI can automatically scan and summarize vast scientific literature, helping teams compile evidence with far less manual effort. For example, AI-driven systems can continuously update a value dossier as new studies are published ⁶. Studies show **dramatic efficiency gains** – using AI to assist systematic literature reviews can cut the time needed by over 75%, with some cases reporting up to 99% *time savings* for certain review tasks ⁷. This means what used to take weeks of human effort in gathering **clinical** and economic evidence can now be done in hours, freeing teams to focus on interpretation and strategy.
- **Pricing Strategy & Predictive Modeling:** AI offers advanced analytics to optimize pricing and reimbursement strategies. Machine learning algorithms can detect patterns in historical pricing, reimbursement decisions, and market data that humans might miss ⁸ ⁹. For instance, AI platforms can integrate data from past drug launches, HTA outcomes, and payer negotiations to predict optimal launch prices or the likelihood of reimbursement at a given price point. One AI tool trained on data from 1,700 European launches was able to predict health technology assessment outcomes with about **90% accuracy** ¹⁰. Similarly, AI pricing engines (such as those by Okra Technologies) analyze historical submissions and pricing data to forecast realistic price expectations for new products ¹¹. These predictive insights help companies set more competitive prices and anticipate payer reactions well in advance.
- **Stakeholder Insights and Value Communication:** Market access involves communicating value to diverse stakeholders – payers, healthcare providers, patient advocates, policymakers. AI can

assist by extracting and analyzing stakeholder insights from unstructured data (think of policy documents, public comments, social media, medical publications). NLP-driven tools can mine over a million scientific and clinical publications to identify unmet needs and trending outcomes that resonate with physicians and patients ¹². By understanding these perspectives, teams can tailor value messages and evidence to address what stakeholders care about most. AI can also monitor payer and health system data to detect shifts in sentiment or priority, allowing companies to proactively adjust their value communication strategies.

- **Real-World Data and Health Economics:** Managing real-world evidence (RWE) is increasingly key to market access, and AI is invaluable here. Machine learning models can sift through real-world datasets (claims, electronic health records, registries) to uncover how a drug is performing in actual practice or which subpopulations benefit most. These insights strengthen the **health economics and outcomes research (HEOR)** case for a product. AI-driven analytics can forecast epidemiological and budget impact scenarios faster and more accurately, supporting the economic models used in reimbursement dossiers ¹³. In practice, companies are using AI to predict outcomes like hospitalizations avoided or long-term cost offsets, giving payers more confidence in a drug's value proposition.
- **Operational Efficiency in Access Processes:** Some routine market access workflows are being automated with AI to improve efficiency. For example, **reimbursement operations** can be streamlined by AI systems that automate claims processing, detect billing/reimbursement errors, and ensure compliance with coverage criteria – reducing administrative burden and payment delays ¹⁴. Field teams are also benefiting: advanced algorithms can score and prioritize accounts or healthcare providers for field reimbursement managers, helping them focus efforts where the risk of access barriers is highest ¹⁵. By automating these labor-intensive tasks and analyses, AI allows market access professionals to spend less time on paperwork and firefighting, and more on strategic planning.

These use cases illustrate that AI's role in market access is broad and growing. From crunching numbers to drafting documents, AI is acting as a force-multiplier for teams – accelerating analyses, revealing data-driven insights, and handling repetitive tasks. The **result** is faster market access and reimbursement processes, as well as more data-informed decisions ¹⁶. Next, we'll look at the major benefits this transformation offers, and also the challenges that organizations must navigate.

Benefits and Opportunities of AI in Market Access

Integrating AI into market access workflows offers **significant strategic and operational benefits**. Firstly, AI enables **speed and agility**. Processes that once took weeks – developing evidence decks, analyzing market trends, monitoring policy changes – can now be done in near-real-time. This agility means companies can respond faster to payer inquiries or sudden market shifts. For example, an AI-driven analytics platform helped one pharma company rapidly diagnose the cause of a sudden market share drop and adjust strategy, leading to a 7% regain in share and over \$7 million in recaptured sales ¹⁷. Such rapid course-correction would be difficult without AI handling the heavy data lifting.

Another opportunity is **improved precision in decision-making**. AI systems excel at finding patterns in large, diverse datasets that humans struggle to connect. By correlating clinical outcomes, patient demographics, pricing histories, and utilization data, AI can pinpoint what drives value in different contexts. This supports more **evidence-based pricing and access strategies**. Instead of relying solely on historical analogs and expert opinion, teams can use predictive models to set prices that reflect real patient benefit and market elasticity ⁸ ¹¹. AI-driven simulations can forecast how a new therapy will

perform under various reimbursement scenarios, so strategy can be optimized before launch. Overall, decisions become more data-driven and tailored to each market's reality.

AI also helps **enhance stakeholder engagement and communication**. By understanding stakeholder needs through data, market access teams can craft value stories that resonate. For instance, if AI analysis reveals that oncologists are particularly concerned with a drug's quality-of-life impact, the team can emphasize that evidence in their dossier and presentations. This customization of value communication can improve the persuasiveness of submissions to health authorities or formulary committees. Moreover, AI can continuously learn from stakeholder feedback (e.g. payer comments or HCP questions) to refine messaging over time. In essence, AI enables a more dynamic and targeted approach to demonstrating value, which is crucial as payers demand **clear proof of outcomes for the money spent** ¹⁸.

From an efficiency standpoint, AI offers **cost and resource savings**. Automating routine analytic tasks and literature reviews not only speeds them up but reduces human resource requirements. Teams can be leaner or focus their expertise on high-impact work while AI handles the grunt work. In the long run, faster market access and fewer reimbursement delays (thanks to AI-optimized processes) can translate to significant financial gains – by getting therapies to patients sooner and extending time on market under reimbursement. Additionally, an often underappreciated benefit is consistency and compliance. AI systems, when properly configured, perform tasks the same way every time and can be programmed to follow the latest guidelines. This reduces errors in submissions and helps ensure nothing is overlooked in an HTA dossier (for example, making sure every claim is backed by data). Such consistency can improve success rates in pricing and reimbursement approvals.

In summary, AI has the potential to **elevate market access functions from a support role to a strategic driver**. It brings speed, data depth, and predictive foresight that empower teams to negotiate better, demonstrate value more convincingly, and proactively manage access hurdles. However, realizing these opportunities is not automatic – there are non-trivial challenges and pitfalls that organizations must address as they adopt AI. We turn to those next.

Challenges and Barriers to AI Adoption

Despite the excitement, integrating AI into pricing and market access is not without **significant challenges** ¹⁹ ²⁰. Key barriers include:

- **Data Quality and Availability:** AI is only as good as the data fed into it. In market access, much of the crucial data (e.g. competitor pricing, rebate levels, real-world outcomes) is fragmented, siloed, or kept confidential ²¹. This lack of comprehensive, high-quality data limits the accuracy of AI models. For instance, pricing algorithms struggle when rival drug prices or negotiated discounts are not publicly known. Integrating disparate data sources (clinical, claims, financial) is an ongoing hurdle. Without robust data engineering, AI insights may be unreliable or biased by gaps.
- **Regulatory and Market Complexity:** The healthcare reimbursement landscape is highly dynamic and **varies by region** – consider Europe's complex reference pricing and HTA systems versus the US's evolving Medicare price negotiations ²². AI tools require constant updates to stay current with new regulations, policies, and market rules. Frequent policy changes (like new cost-effectiveness thresholds or formulary rules) can quickly make an AI model's predictions obsolete if not continually retrained. This means ongoing maintenance and oversight is essential, adding to the implementation burden. AI also struggles with context nuances; for

example, an algorithm might not fully grasp why a payer in Germany values certain endpoints differently than one in Spain without explicit programming.

- **Need for Human Judgment and Oversight:** Market access decisions often involve **nuance, context, and ethical considerations** that automated systems can't fully handle ²³ ²⁴. Health Technology Assessment outcomes, for example, depend on clinical subtleties and social value judgments in addition to data. AI predictions might guide the team, but expert humans are still needed to interpret *why* a price should be set at a certain level or *how* to negotiate with a particular payer. Over-reliance on black-box algorithms is risky. Indeed, even when AI suggests an optimal strategy, seasoned professionals must validate that it makes sense in the real world. Notably, regulators and payers themselves have expressed that **automated decisions should not override clinical judgment or patient considerations**, and they expect human experts to remain in the loop ²⁵.
- **Organizational Readiness and Skills Gap:** Adopting AI requires new skills and ways of working that many market access teams do not yet have. Data science and AI modeling expertise are needed to build or at least manage these tools – skills traditionally outside the remit of market access departments. Companies report a shortage of talent who understand both AI and the nuances of market access. Moreover, there can be internal resistance: team members may be wary of AI, worrying it could make their roles obsolete or distrusting its recommendations. This cultural and change management challenge can impede implementation. In fact, many pharma AI initiatives stall at the pilot stage – one analysis found only ~13% of AI projects in healthcare advance beyond testing, often due to lack of strategic alignment and internal buy-in ²⁶. Moving from a successful pilot to full-scale adoption across markets is a major hurdle.
- **Ethical and Legal Concerns:** With AI comes a host of ethical questions, especially in something as sensitive as healthcare access. Issues of **bias** can arise – if the data used to train an AI has biases (say, under-representing certain patient groups or geographies), the recommendations might inadvertently favor some populations over others. There have also been high-profile concerns about AI being used in ways that could deny coverage or access unfairly ²⁵. For example, an algorithm that predicts non-adherence might suggest not approving a costly therapy for a patient segment, raising ethical red flags. Privacy is another concern: real-world data used by AI must be handled in compliance with patient privacy laws, and any AI outputs must not violate confidentiality. Ensuring transparency is also tricky; when an AI suggests a price or a formulary action, stakeholders will ask *why*. If the reasoning isn't explainable, trust can erode quickly.

Addressing these challenges is critical to harness AI's potential. Companies must invest in high-quality data systems, maintain a strong human-in-the-loop approach, upskill their people, and institute proper governance for ethical AI use. We discuss how to tackle these in the next section on preparing teams and organizations for AI.

Preparing Teams and Organizations for an AI-Driven Future

An AI maturity model suggests companies progress from setting a clear AI vision, to planning high-impact use cases, to building long-term capabilities and managing change (adapted from industry best practices). Ensuring a strategic, phased approach will help teams successfully integrate AI ²⁷.

Successfully implementing AI in market access is as much about **people and processes** as it is about technology. Organizations need to thoughtfully prepare their teams and workflows to fully realize AI's benefits. Based on cross-industry lessons, market access leaders should consider the following steps:

- **Develop a Clear AI Strategy Blueprint:** Rather than ad-hoc tool adoption, start with a strategic plan for AI that aligns with your business goals ²⁸ ²⁹. Identify the most pressing needs of your market access and HEOR teams – whether it's accelerating evidence reviews, improving pricing accuracy, or better payer engagement – and target AI solutions to those needs. A well-defined roadmap or "AI blueprint" helps avoid the common pitfall of experimenting with shiny AI tools that don't solve real problems. Set **clear objectives and success metrics** for any AI pilot (e.g. reduce dossier preparation time by 50%, or improve forecast accuracy by X%) ³⁰. This strategic alignment ensures AI projects deliver tangible value and can scale beyond the pilot phase.
- **Foster Cross-Functional Collaboration:** Implementing AI in market access is not a solo endeavor – it works best as a team sport. Engage colleagues from data science, IT, medical affairs, and commercial analytics to partner with market access experts ³¹. This cross-functional approach brings together technical know-how with domain expertise. For example, data engineers can help aggregate the needed datasets, while market access managers define the business rules and interpret results. Some organizations have formed dedicated "AI task forces" or working groups that include market access, HEOR, and analytics staff to jointly develop AI use cases. Breaking down silos is crucial; close collaboration ensures the AI tools are practical for end-users and that insights flow smoothly into decision-making.
- **Invest in Skills and Training:** Empower your existing team to work effectively alongside AI. This means providing training in both the use of AI tools and in basic data literacy. Market access professionals don't all need to become data scientists, but they should understand concepts like how an algorithm makes predictions, what a confidence interval means, or how to interpret outputs from an NLP analysis. Upskilling can be done via workshops, e-learning, or hands-on sessions with new software. Additionally, consider bringing in new talent where gaps exist – for instance, hiring an analyst with programming or machine learning skills into the market access team. According to industry surveys, only about 13% of pharma companies currently have a comprehensive AI talent strategy in place ²⁶. Leading organizations are starting to create roles such as "AI lead" or "data strategist" within market access departments to champion these efforts. The bottom line is that **people** are at the heart of AI adoption, and equipping them with the right skills is a direct investment in future success.
- **Start Small, Then Scale Up:** It's wise to begin with a focused pilot project that addresses a well-defined problem, then expand based on what you learn. For example, you might pilot an AI tool to automate literature screening for one therapeutic area's value dossier. Measure the outcomes (time saved, quality of output, user feedback) and iterate. Early quick wins help build momentum and buy-in across the organization. With evidence of success, you can secure funding and confidence to roll AI out to more products or markets. This phased approach also allows you to refine governance – establishing protocols for validating AI results, defining what requires human review, and so forth on a small scale before the stakes get higher. In essence, **learn fast, but start small** to manage risk.
- **Embrace Change Management:** Adopting AI-driven processes is a significant change for many teams, so proactive change management is essential. Communicate the vision that AI will *augment* human expertise, not replace it – the goal is to offload drudgery and empower people to focus on higher-level work. Involve end-users early in tool design and selection so they feel ownership. Provide ongoing support and share success stories of how AI is helping colleagues

excel in their roles. Also, set realistic expectations: there may be a learning curve and initial kinks to iron out. Allocate time and resources for training and refining workflows rather than expecting instant perfection. Companies that **underestimate the cultural shift** often struggle; those that support their teams through the transition reap the rewards of higher adoption and better outcomes ³². Remember that change fatigue can be real – celebrating incremental wins and reinforcing the purpose behind the AI initiative will help sustain enthusiasm.

By taking these steps, organizations build a solid foundation for AI in market access. A recent white paper emphasized the importance of investing in data infrastructure, establishing strong governance, and integrating AI with human expertise from the start ²⁷. In practice, this means instituting oversight committees or guidelines for AI use (more on governance in the next section), and ensuring that at every stage humans are guiding the AI and validating its outputs. The companies that approach AI adoption in a **phased, strategic manner – grounded in collaboration, clarity, and upskilling – will be best positioned to navigate the coming transformation** ³³.

Regulatory and Ethical Considerations

Deploying AI in any pharmaceutical function comes with important **regulatory and ethical obligations**, and market access is no exception. Companies must navigate evolving laws and guidelines to ensure their AI-driven activities remain compliant and ethical.

On the regulatory front, authorities around the world are actively shaping how AI can be used in healthcare contexts. In the **European Union**, the forthcoming *EU AI Act* represents one of the first comprehensive legal frameworks for AI ³⁴. It will classify AI systems by risk level and impose requirements accordingly – for example, AI used in healthcare decision-making (likely deemed “high-risk”) will face strict standards for transparency, oversight, and quality management. Pharma companies operating in Europe will need to understand how their market access AI tools (say an algorithm that predicts HTA outcomes) are regulated under this law. Compliance could involve documenting how the AI was trained, performing risk assessments, and possibly undergoing external audits or certification for the AI system. Even beyond the AI Act, existing EU regulations like GDPR (for data privacy) strongly affect AI projects, since market access AI often relies on patient health data. Ensuring patient data is anonymized, secure, and used with proper consent is not just ethical – it’s legally mandatory.

In the United States, while there isn’t yet an AI-specific law for pharma, regulators are increasingly vocal about safe and transparent AI use. The FDA has issued guidance on AI in medical devices, emphasizing points like algorithm bias, accountability, and robust performance monitoring ³⁵. For pharma market access teams, an analogous concern would be ensuring that any AI impacting patient access decisions is thoroughly vetted and doesn’t inadvertently harm patients. There is also the Centers for Medicare & Medicaid Services (CMS) to consider; as CMS implements drug price negotiations and innovative payment models, one could envision future guidance on acceptable analytics (including AI) to support submissions for coverage or pricing. Being proactive, some pharma companies are already engaging with regulators via workshops or consultations to discuss their use of AI in evidence generation and pricing, aiming to stay ahead of any compliance issues.

Ethically, a core principle is **transparency and fairness** in AI-driven decisions. Market access teams should be prepared to explain how an AI algorithm reached its recommendation – whether to internal stakeholders, payers, or even patients in some cases. Lack of transparency can lead to trust issues, especially if an automated recommendation is unfavorable (e.g. not recommending coverage for a certain patient subgroup). If challenged, the team should have documentation of the model’s logic and validation. **Bias mitigation** must be a priority from the design phase onward ³⁶. This involves testing

AI outputs for any systematic bias – for instance, does the model's prediction systematically favor large patient populations over rare-disease patients? If so, adjustments or additional data may be needed to correct it. Many organizations are instituting ethical AI guidelines that require such bias testing, as well as mandating human review of critical decisions. In fact, after reports that an insurer's AI tool might have been used to deny patient coverage, regulators have signaled that **human review is essential** before acting on AI-driven determinations ²⁵.

Another ethical aspect is the **patient impact**. Market access is ultimately about getting therapies to patients who need them. AI should be used in service of that goal, not just to maximize profits. For example, if a pricing algorithm suggests a very high price that would limit patient affordability, the team should weigh the ethical balance and consider patient access schemes or discounts accordingly. Similarly, AI might identify that certain patient populations are unprofitable under a value-based contract; the ethical response would be to investigate ways to ensure those patients aren't left behind, rather than excluding them outright. Integrating ethical review into AI project governance can help – some firms have set up ethics boards or at least a checklist to review before deploying an AI solution (covering questions of patient welfare, fairness, etc.).

Global variation in standards is another consideration. What's acceptable in one country might be restricted in another. For instance, using AI to process personal health data might be feasible in the US under HIPAA business associate agreements, but in the EU, GDPR and local laws could impose more hurdles. Likewise, countries like Japan or China are developing their own AI guidelines. Market access teams operating globally should tailor their AI approaches to each region's norms and regulations.

In summary, **responsible AI use** in market access means staying informed about the regulatory landscape and building compliance and ethics into your AI projects from day one. Experts advise to “prioritize ethical AI development” – implement bias mitigation, ensure human oversight, and safeguard data privacy as core tenets of any AI initiative ³⁶. Companies that do so not only avoid legal troubles, but also build trust with healthcare stakeholders. By being transparent and ethical, you make it more likely that payers and providers will accept the insights from your AI models in decision-making. Market access is ultimately about trust and evidence; a well-governed AI can enhance both.

Future Outlook and Conclusion

Looking ahead, the influence of AI on pharmaceutical market access is set to expand even further. We are likely at the tipping point where early adopters' successes will drive broader industry change. So far, many of the pioneering AI applications in pricing and access have come from specialized consultancies or pilot programs, with large pharma companies only cautiously testing the waters ³⁷. In the near future, we can expect AI to move from pilot projects to enterprise-wide platforms within pharma organizations. As more case studies demonstrate ROI – faster reimbursement approvals, more accurate pricing forecasts, fewer failed launches – executive leadership will invest in scaling these solutions. It's foreseeable that in a few years, *every* major market access team will have some form of AI-powered “copilot,” whether for drafting their value dossiers, analyzing real-world outcomes, or prioritizing market opportunities.

The nature of market access roles will evolve. There is a growing consensus that rather than replacing market access professionals, AI will **augment** their capabilities. Routine tasks like basic HTA submission writing, data pulling, or form-filling could be largely automated, potentially changing how teams are structured. Some administrative roles might diminish, but new roles will emerge – such as experts who specialize in interpreting AI outputs or in training AI systems with the latest health economic data. Market access professionals will likely spend more time on strategic thinking, scenario

planning, and stakeholder engagement, using AI-generated insights as input. This shifts the skill mix toward higher-level analytical and communication skills, with AI handling the low-level analysis. Those who embrace this shift will thrive; those who “cling to an aging identity” of doing things the old manual way risk seeing their function become less impactful ³⁸. One provocative view is that if teams do not evolve, **AI could automate large parts of submissions and formulary processes, reducing today's roles to operational oversight** ³⁸. The way to avoid that fate is to **proactively redefine roles** now – make sure people are focusing on value strategy and using AI to deliver insights, not simply doing tasks that a machine can do.

From a technology perspective, we will see more **advanced AI techniques** being applied. Generative AI (like GPT-4 and its successors) could play a big part in drafting and translating content for different stakeholders. Imagine an AI system that produces a first draft of a country-specific reimbursement dossier, pulling in all the latest evidence and phrasing it according to that agency's guidelines – significantly reducing the manual writing workload. Early signs of this are already here: AI has been shown to write clinical study reports nearly 90% complete in minutes ³⁹, and similarly can automate large portions of global value dossiers ⁶. It's plausible that **“living” value dossiers** will become the norm, where an AI continually updates a cloud-based dossier with new real-world data or publication findings as they become available. This keeps the evidence base current at all times, so whenever a payer engagement happens, the latest information is on hand. Additionally, we can expect AI to become more predictive and prescriptive. Future AI might not only forecast an HTA outcome but also recommend the *optimal* mix of evidence and the *exact* messaging to sway that outcome in the company's favor (within ethical bounds). AI might simulate how different payers (with their unique preferences and health system contexts) will react to a value proposition, allowing tailoring of strategies by stakeholder.

Another aspect of the future is **AI on the payer side**. Just as pharma is adopting AI, payers and health technology assessment bodies are likely to use AI tools to evaluate submissions and monitor drug performance. This means market access teams might eventually be interfacing with *algorithms* as much as with human reviewers. For example, a payer might use an AI to check the consistency of a submitted economic model or to predict budget impact. Pharma companies will need to ensure their data and dossiers are ready for such scrutiny – possibly by adopting more standard data formats or by pre-validating their models with independent AI. It raises the intriguing possibility of a more quantitative, fast-paced negotiation process, where each side's AI tools present scenarios and an agreement is reached more efficiently. Of course, humans will still negotiate final terms, but much of the heavy analytical back-and-forth could be expedited.

In terms of **regulatory evolution**, as these technologies mature, we can expect clearer guidelines that will actually facilitate AI use. Regulators may publish standards for AI validation in pharmacoeconomic modeling or issue qualifications for certain AI tools, which could make payers more comfortable trusting AI-derived evidence. Collaboration between industry, payers, and regulators on AI is likely to increase – for instance, sharing of anonymized datasets to improve models for rare diseases where data is scant, or developing consensus on what constitutes an acceptable level of explainability for AI in decision-making.

To conclude, AI is poised to fundamentally reshape how pharmaceutical market access is achieved, making it more data-driven, efficient, and potentially more equitable (if used wisely). But success in this AI-driven future is not guaranteed for all – it will belong to those organizations that **adapt and learn**. By embracing AI tools while upholding rigorous ethical and quality standards, market access teams can greatly amplify their impact. They will be able to identify the right value for each stakeholder, communicate it convincingly, and secure patient access to innovations more smoothly. The experts convened in the recent panel underscored that now is the time to prepare: build the skills, pilot the

technologies, and instill the governance needed for AI, because it is quickly moving from theory into practice across market access functions. In an era of mounting evidence requirements and cost pressures, **AI will be a key differentiator** between companies that can navigate the complexity and those that fall behind ⁴⁰. By taking a strategic, ethical, and proactive approach, pharma companies can ensure that AI becomes a powerful ally in their mission to deliver valuable therapies to the patients who need them. The transformation has begun – and those who learn to leverage AI effectively will shape the future of market access.

Sources:

1. Life Science Dynamics. *Unlocking the potential of AI in Pricing, Reimbursement and Market Access (PRMA)* ⁴¹ ⁴²
2. Life Science Dynamics. *Unlocking the potential of AI in PRMA* – Strategic advantages of AI (examples: Okra predictive pricing, NLP for dossiers, etc.) ⁹ ¹³
3. Life Science Dynamics. *Unlocking the potential of AI in PRMA* – Challenges and future outlook (data limitations, need for oversight, ethical concerns, case examples of AI tools) ⁴³ ²⁵ ⁴⁴
4. ISPOR Europe 2025 Conference. *Integrating AI Into Market Access Workflows – Session Description* ⁵ ⁴⁵
5. Eularis Consulting. *"An AI Prescription for Pharma Success"* – Part 1 (benefits of AI across pharma, importance of strategy; notes that AI can automate GVD updates and improve pricing/reimbursement outcomes) ⁶
6. Guidehouse Insights. *Rethinking Market Access as a Commercial Growth Engine* (perspective on how AI and data could automate parts of market access and the need for strategic role evolution) ³⁸
7. Frontiers in Pharmacology (Cohen et al., 2025). *How much can we save by applying AI in evidence synthesis?* (review showing 75%–99% reduction in literature review time with AI assistance) ⁷
8. Cellegence Blog. *AI Compliance in Pharma: EU, US & UK Insights* (advice on aligning AI with regulatory requirements and ethical best practices) ⁴⁶ ³⁶
9. Life Science Dynamics. *Unlocking the potential of AI in PRMA* – Recommendations (need for data infrastructure, cross-functional collaboration, phased approach with human expertise) ²⁷

¹ ² ³ ⁴ ⁸ ⁹ ¹⁰ ¹¹ ¹² ¹³ ¹⁴ ¹⁵ ¹⁶ ¹⁷ ¹⁸ ¹⁹ ²⁰ ²¹ ²² ²³ ²⁴ ²⁵ ²⁷ ³⁰ ³¹ ³² ³³ ³⁷ ⁴⁰

⁴¹ ⁴² ⁴³ ⁴⁴ *Unlocking the potential of AI in Pricing, Reimbursement and Market Access (PRMA)* – Lifescience Dynamics

<https://www.lifesciencedynamics.com/press/articles/unlocking-the-potential-of-ai-in-pricing-reimbursement-and-market-access-prma/>

⁵ ⁴⁵ *ISPOR - Integrating AI Into Market Access Workflows*

<https://www.ispor.org/heor-resources/presentations-database/session-cti/isporeurope-2025/integrating-ai-into-market-access-workflows>

6 26 28 29 39 An AI Prescription for Pharma Success: Why an AI Strategic Blueprint is the Vital First

Step - Part 1 - Eularis

<https://eularis.com/why-an-ai-strategic-blueprint-is-the-vital-first-step-for-successful-ai-solution-implementation/>

7 Frontiers | How much can we save by applying artificial intelligence in evidence synthesis? Results from a pragmatic review to quantify workload efficiencies and cost savings

<https://www.frontiersin.org/journals/pharmacology/articles/10.3389/fphar.2025.1454245/full>

34 35 36 46 AI Legislation & Global Regulatory Compliance Updates in Pharma

<https://www.celegence.com/ai-legislation-updates-for-pharma-companies-us-eu-mhra/>

38 Rethinking market access as a commercial growth engine | Guidehouse

<https://guidehouse.com/insights/healthcare/2025/commercial-growth-engine>