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A B S T R A C T

Advances in machine learning (ML) and artificial intelligence offer tremendous potential benefits to patients. Predictive
analytics using ML are already widely used in healthcare operations and care delivery, but how can ML be used for health
economics and outcomes research (HEOR)? To answer this question, ISPOR established an emerging good practices task force
for the application of ML in HEOR.

The task force identified 5 methodological areas where ML could enhance HEOR: (1) cohort selection, identifying samples
with greater specificity with respect to inclusion criteria; (2) identification of independent predictors and covariates of health
outcomes; (3) predictive analytics of health outcomes, including those that are high cost or life threatening; (4) causal
inference through methods, such as targeted maximum likelihood estimation or double-debiased estimation—helping to
produce reliable evidence more quickly; and (5) application of ML to the development of economic models to reduce
structural, parameter, and sampling uncertainty in cost-effectiveness analysis.

Overall, ML facilitates HEOR through the meaningful and efficient analysis of big data. Nevertheless, a lack of transparency on
how ML methods deliver solutions to feature selection and predictive analytics, especially in unsupervised circumstances,
increases risk to providers and other decision makers in using ML results.

To examine whether ML offers a useful and transparent solution to healthcare analytics, the task force developed the PAL-
ISADE Checklist. It is a guide for balancing the many potential applications of ML with the need for transparency in methods
development and findings.

Keywords: artificial intelligence, machine learning.
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Introduction

The term “machine learning” (ML) refers to a family of statis-
tical methods that generally focus on classification, ranking, and
prediction.1 Modern healthcare data are characterized by high
dimensionality, massive volume, rapid turnover, and complexity
of structure. These characteristics require efficient methods to
generate evidence where traditional approaches are costly or
limited. There is a growing recognition of the applicability of ML
approaches to address healthcare problems.2 In this article, we
focus upon the potential applications of ML in health economics
and outcomes research (HEOR).1

There are 2 broad categories of ML methods—supervised and
unsupervised.3 Supervised methods require specification of an
outcome variable to perform classification, ranking, or prediction.4

Unsupervised methods are focused mainly on dimension reduc-
tion and identifying the underlying structure of the data without
specifying outcomes.
15/$36.00 - see front matter Copyright ª 2022, International Society for Ph
Traditional ML models rely upon the development of features—
or variables—that are defined based on researcher domain
knowledge. In contrast, representation learning methods,
including so-called deep learning models, extract features directly
from the data itself, thereby enhancing our understanding of the
structure or relationship between causes and effects in the data
that may have been previously unknown.5,6

ML is a potentially valuable addition to the HEOR toolkit. ML can
facilitate the search for complex relationships in high-dimensional
data sets, such as those generated by electronic health records
(EHRs) ormobile health devices. These relationships can be used to
improve detection and classification of disease, to identify cohorts
of patients sharing characteristics that might not be obvious when
considering only a small set of variables using traditional methods,
and to forecast trajectories of health outcomes under alternative
personalized treatment options.7

Using supervised or unsupervised ML can enhance the value of
healthcare delivery by potentially triggering interventions before
armacoeconomics and Outcomes Research, Inc. Published by Elsevier Inc.
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Figure 1. Conceptual diagram of machine learning applications in HEOR.

HEOR indicates health economics and outcomes research; NLP, natural language processing; PCA, principal component analysis; QALY, quality-adjusted life-year.
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adverse outcomes occur, but ML is subject to all of the usual chal-
lenges encountered in other forms of observational data analysis. In
particular, the fact that ML methods operate on big data does not
necessarily protect against bias. Increasing sample size—for example,
obtaining additional administrative healthcare data—does not cor-
rect theproblemof bias in treatment effect estimates if the data set is
lacking in key clinical severity measures, such as cancer stage in a
model of breast cancer outcomes, or contains confounders that we
know little about with respect to a causal pathway.8,9

This criticism especially applies to situations where the
objective is to estimate causal effects in observational studies
using routinely collected healthcare data. For prediction, the
cross-validation machinery will do its best to minimize
Table 1. ML applications for HEOR.

Concept Definition

Big data Referring to data with high dimen
observations and features—often
support high throughput analytics
econometric methods in HEOR.

Cohort selection The process of using a set of inclu
perform a retrospective study. ML
processing on unstructured data,
characteristics from large volumes

Feature selection The process of selecting a subset
covariates) for use in model const
with the main outcome measure f

Predictive analytics Systematic examination of the ass
estimates of outcomes not yet obs
to represent the associative struct
values from those models.

Causal inference The process of drawing a conclusi
controlling for the effects of confo
incorporate ML can have lower bia
of ML algorithms used.

Economic evaluation ML methods can reduce uncertain
sampling uncertainty given that da
ML offers analysis of vast amount
modeling that represents more re

HEOR indicates health economics and outcomes research; ML, machine learning.
prediction error, but this may not minimize bias because of
a lack of comparability between treatment and control
groups—particularly when the groups differ in features not
measured in the data.

The ISPOR ML Methods Emerging Good Practices Task Force
developed guidance for HEOR and decision makers in the use of
ML methods. This report considers 5 applications of ML methods
that are important to HEOR: (1) ML-assisted cohort selection, (2)
feature selection, (3) predictive analytics, (4) causal inference, (5)
health economic evaluation, and reflection on transparency and
explainability (Fig. 1). We present these considerations in an order
reflecting a standard approach to performing HEOR: identifying a
study population, classifying exposures that can alter outcomes,
sionality based on complex combinations of large numbers of
with less structure than typical observational data. ML methods can
of big data more efficiently than traditional statistical and

sion and exclusion criteria to select a set of patients upon which to
methods, sometimes combined with the use of natural language
empower researchers to identify individuals with specific
of observations in a time-efficient manner.

of relevant features (key independent variables, predictors, and
ruction. ML can be used to identify variables that have associations
rom a large volume of potential predictors.

ociative structure of observed data for the purpose of generating
erved. It comprises a set of statistical models and/or algorithms used
ure of observed data along with a set of rules to generate estimated

on about a causal effect of an intervention conditional upon
unding influences. Statistical approaches for causal inference that
ses than traditional parametric approaches, because of the flexibility

ty in economic models with respect to structural, parameter, and
ta are more fit for purpose of the exact model needs. Furthermore,
s of data that would be required to facilitate dynamic simulation
al-world aspects of health systems.



Table 2. ML methods that could become common in support of HEOR practices

Method ML
classification

Definition Example applications

Classification and
regression

Bayesian belief
networks

Supervised Bayesian belief networks express proposed
relationships (edges) among variables (nodes) as a
network. When expressed as a DAG, the causal
relationship among variables can be expressed as a
set of conditional distributions that can be estimated
from the data and combined with beliefs (priors)
about potential relationships.

Economic evaluation predictive analytics

Hidden Markov
chains

Supervised Models used to explore dependency between
adjacent time points to establish temporal order of
exposures leading to a series of common outcomes.
Hidden traits allow the machine to identify transitions
between potentially unobserved health states.

Economic evaluation
� Transition probability extraction
� Health state designations

Ridge and LASSO
regression, elastic
net

Supervised These are penalized regression methods. Elastic nets
are regularized regression models that penalize the
least squares criterion by adding a function of the
magnitude of the parameter estimates, with the goal
of reducing the influence of weak predictor variables,
thus reducing variance of predictions. When the
function is the sum of the absolute value of
parameters, LASSO is obtained; when using the sum
of the squared value of parameters, ridge regression
is obtained. Although prediction accuracy may be
improved, individual parameter estimates may be
biased.

Feature selection, predictive analytics, causal
inference (propensity score, outcome regression,
“double variable selection” to select confounders)

Tree-based
methods

Decision tree Supervised Decision tree, or classification tree, is used to predict
a qualitative response for an observation belonging
to the most commonly occurring class of training
observations in the region to which it belongs.

Economic evaluation
� Determining clinical pathways
� Structuring a decision model
� Predictive analytics

Random forests Unsupervised
or supervised

Random forest is an ensemble method comprising
multiple tree-based (recursive partitioning) models.
Each tree is generated following prespecified rules,
but with a different sample of observations (see
bagging) or using a different subset of variables (see
feature selection).

Predictive analytics, feature selection, causal
inference (propensity score, outcome regression,
causal forests for treatment effect heterogeneity)

Ensemble meta-
learners

Boosting Supervised Boosting is an ensemble method in which sequences
of models are generated, each subsequent model
being built based on prediction errors from the
previous stage. Adaptive boosting upweights poorly
predicted observations in the subsequent stage,
whereas gradient boosting estimates the prediction
error from the previous stage.

Predictive analytics, causal inference

Bagging Unsupervised
or supervised

Bagging is a process for generating ensembles of
models using repeated Bootstrap resamples applying
ML model to each resample and aggregating them
into a consensus prediction.

Feature selection, predictive analytics

Stacking Supervised Stacking is a meta-learning algorithm to learn how to
best combine the predictions (eg, using weights) from
2 or more base ML algorithms. It can harness the
capabilities of several well-performing models and
make predictions that have better performance than
any single model in the ensemble. “Super learning” is
an example of stacking.

Predictive analytics, causal inference (propensity
score, outcome regression)

Clustering

Hierarchical
clustering

Unsupervised Bottom-up agglomeration or top-down division of
observations into groups based on strength of
association to common features. Number of clusters
are learned ex poste rather than prespecified.

Cohort selection, feature selection

continued on next page
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Table 2. Continued

Method ML
classification

Definition Example applications

K-means
clustering/
partitioning
around medoids

Unsupervised Partitioning observations into prespecified numbers
of clusters based on common degrees of association
to features of interest. It requires that the
programmer specify the number of clusters a priori.

Cohort selection, feature selection

PCA Unsupervised A dimensionality reduction method that identifies a
set of projections that represent the majority of
variability in the data

Feature selection

Deep learning

Neural networks Supervised or
unsupervised

A series of algorithms that endeavor to recognize
underlying relationships between exposures and
outcomes based on layers of interactions and
intermediate outcomes. Methods include artificial
neural networks, convolution neural networks, and
recurrent neural networks.

Feature selection, predictive analytics, causal
inference

Data-specific
approaches used
with ML

Text:
NLP

Supervised or
unsupervised

To read, decipher, and understand language encoded
in medical records to extract data for patient cohorts
of interest based on common keywords or phrases

Cohort selection

Imaging:
Image
recognition/
computer vision

Supervised or
unsupervised

Ability of software to identify objects, change, and
disease in image data such as video sequences, views
from multiple cameras, multidimensional data from
a 3D scanner, or medical scanning devices, such as
CT and MRI. Computer vision systems are used to
process, correct, and analyze the images, for
example, of surgical tools and the patient’s body.

Predictive analytics, economic evaluation
� Transition probability extraction
� Health state designations

Audio:
DSP

Supervised or
unsupervised

Processing and detection of signals in sound files of
voice and other audio, with health applications in
hearing aids

Predictive analytics, causal inference, economic
evaluation
� Health state designations

CT indicates computed tomography; DAG, directed acyclic graph; DSP, digital signal processing; HEOR, health economics and outcomes research; LASSO, least absolute
shrinkage and selection operator; ML, machine learning; MRI, magnetic resonance imaging; NLP, natural language processing; PCA, principal component analysis.
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predicting the association between exposures and outcomes,
assessing causal effects of interventions, and understanding
whether or not interventions or healthcare policy decisions add
value (Table 1). The intent is to introduce these concepts at a high
level and refer readers to sources where they can learn more
about theory and techniques that can support and advance the
HEOR field.
Cohort Selection

Researchers are challenged when data elements necessary to
apply study inclusion and exclusion criteria are trapped within the
unstructured portions of the patient’s EHR.10 Traditionally, human
review to abstract these unstructured elements is expensive and
time consuming.11 This limits the size of cohorts that can be
studied, especially for rare criteria in which a large number of
charts need to be abstracted to find just a few cohort-eligible
patients.

One of many ML techniques and applications described in
Table 2 is to use natural language processing (NLP) to help in
defining cohort selection criteria. In this process, abstractors first
label the patients (ie, is cancer metastatic?), then train a model on
the labeled data, and apply the trained model as an extra prefilter
to new data. When the probability of eligibility is above a specified
threshold, a patient is queued for further human abstraction. This
process increases the efficiency by reducing the total number of
patients needing abstraction by human reviewers, allowing more
precise study eligibility criteria at scale.

When labeled data are available, ML methods can also be used
to identify features that are correlated with the probability of
observing the outcome of interest without previous specification
of these features. Patients who have similar probabilities of the
outcome but do not have the treatment of interest can serve as
comparators for treatment effectiveness estimation. The use of ML
for identification of comparison groups has been demonstrated to
reduce bias in treatment effect estimates relative to traditional
approaches.12,13

If unstructured data are required to determine cohort eligi-
bility, NLP techniques may sometimes be used to convert un-
structured data to structured data. Relevant methods include
term-frequency inverse-document frequency, named entity
recognition, or deep learning methods such as word embeddings,
document embeddings, or language models such as Bidirectional
Encoder Representations from Transformers.14 If labeled data are
incomplete, unsupervised techniques such as clustering may also
be used to assign labels.

ML-assisted cohort selection has been used in numerous HEOR
studies (Table 3).5,15-38 For example, the model-assisted cohort
selection application at Flatiron Health is used to source and select
patients for oncology studies from deidentified EHR-derived
data.30 Other ML case studies have demonstrated the ability to
identify larger volumes of patients for studies.39 Sohn et al29 built
a system to extract physician-asserted side effects from EHR



Table 3. Case studies of ML methods applied in HEOR.

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Ting et al, JAMA
2017

Development
and Validation
of a Deep
Learning
System for
Diabetic
Retinopathy
and Related Eye
Diseases Using
Retinal Images
from
Multiethnic
Populations
With Diabetes

Cohort study Diabetic
retinopathy

EHR Predictive
analytics

Deep learning Deep learning
improved
diagnostic
accuracy for
diabetic
retinopathy by
training the
algorithm on
494 661 retina
images.

Diabetic
retinopathy
can be
diagnosed with
greater
specificity and
sensitivity
using deep
learning
methods than
traditional
n-of-1
diagnosis.

15

Nori et al,
Alzheimers &
Dementia 2019

ML models to
predict onset of
dementia: A
label learning
approach

Case-control Dementia Claims
and EHR

Predictive
analytics

Gradient
boosting

Combined claims
and EHR data to
test whether
label learning
methods could
improve
prediction of
Alzheimer’s
disease.

Label learning
methods did
not
significantly
improve
predictive
models of
Alzheimer’s
disease.

16

Cole et al,
Pediatr
Rheumatol
2013

Profiling risk
factors for
chronic uveitis
in juvenile
idiopathic
arthritis: a new
model for EHR-
based research

Cohort study Uveitis EHR Feature
selection;
predictive
analytics

Logistic
regression;
unsupervised
hierarchical
clustering

ML improved
specificity of
medication
delivery to
patients of
varying
characteristics
with chronic
uveitis.

Text analytics
can care of
future patients
based on n-of-
1 samples of
previous rare-
disease cases.

17

Hong et al,
PLoS One 2018

Predicting
hospital
admission at
emergency
department
triage using ML

Cohort study High-risk hospital
admission

EHR Predictive
analytics

Logistic
regression;
boosting;
neural
network

ML algorithms
improved
predictive
validity of efforts
to anticipate a
hospital
admission.

ML can
accurately
predict
hospital
admission
based on
patient history
in the EHR.

18

Futoma et al,
J Biomed
Inform 2015

A comparison
of models for
predicting early
hospital
readmissions

Cohort study 30-day hospital
readmission

EHR Feature
selection;
predictive
analytics

Deep
learning;
random forest

Random forests
selected features
that
appropriately
differentiate
readmission risk
between cohorts,
and deep
learning
improves
readmission
prediction
accuracy.

Deep learning
can improve
prediction of
30-day
readmission.

19

Rajkomar et al,
NPJ Digit Med
2018

Scalable and
accurate deep
learning with
electronic
health records

Cohort study In-hospital
mortality

EHR Predictive
analytics

Deep learning Deep learning
increased
sensitivity and
specificity of
predicting in-
hospital
mortality and 30-
day readmission.

Deep learning
outperforms
statistical
methods to
improve
prediction of
measures of
hospital
performance.

5

continued on next page
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Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Xu et al,
J Biomed
Inform 2011

Applying
semantic-based
probabilistic
context-free
grammar to
medical
language
processing–a
preliminary
study on
parsing
medication
sentences

Cohort study Colorectal cancer EHR Cohort
selection

NLP Algorithm
combined ML
and NLP to
detect patients
with colorectal
cancer.

A 2-step
method
extracted
disease
concepts from
clinical notes
followed by
confirmation
of cases using
aggregated
information
from
narratives and
billing data.

20

Jiao et al,
Nature
Commun 2020

A deep learning
system
accurately
classifies
primary and
metastatic
cancers using
passenger
mutation

Cohort study Cancer Genomic
data

Predictive
analytics

Deep learning Predicted cancer
type based on
patterns of
somatic
passenger
mutations
detected in
whole genome
sequencing of
2606 tumor
archives.

Passenger
mutations can
inform
detection of
circulating
tumor DNA.

21

Liu et al, AMIA
Annu Symp
Proc 2012

A study of
transportability
of an existing
smoking status
detection
module across
institutions

Cohort study Smoking EHR Cohort
selection

NLP Detected
smoking status
in patient charts.

A customized
module
achieved
significantly
higher
F-measures
than direct
applications.

22

Padula et al,
BMJ Qual Saf
2019

Value of
Hospital
resources for
effective
pressure injury
prevention: a
cost-
effectiveness
analysis

Markov
modeling

Hospitalized
patients at risk of
pressure injuries

EHR Economic
evaluation

Hidden
Markov chain

Hidden Markov
chain provided
structure for the
economic model
by identifying
transition
probabilities for
unobserved
health states in
data.

Predicting
high-risk
patients using
ML can reduce
risk of patients
and conserve
costly labor/
nursing time.

23

Kreif et al, Am J
Epidemiol 2017

Estimating the
Comparative
Effectiveness of
Feeding
Interventions in
the Pediatric
Intensive Care
Unit: A
Demonstration
of Longitudinal
Targeted
Maximum
Likelihood
Estimation

Longitudinal
analysis of
clinical trial
data

Pediatric ICU EHR Causal
inference

TMLE using
super learning

TMLE using
super learning
adjusted for
time-dependent
confounding.

The study
estimates the
probability of a
child’s being
discharged
alive from the
pediatric ICU
by a given day,
under a range
of longitudinal
feeding
regimes. It
demonstrates
the benefit of
the flexible
TMLE
approach.

24

continued on next page

1068 VALUE IN HEALTH JULY 2022



Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Padula et al,
JAMIA 2017

Using clinical
data to predict
high-cost
performance
coding issues
associated with
pressure ulcers:
a multilevel
cohort model

Cohort study Hospitalized
patients at risk of
pressure injuries

EHR Feature
selection;
predictive
analytics

Random
forests;
multilevel
logistic
regression

Random forests
identified key
variables for the
predictive model
from an EHR of
. 10 000
potential
predictors.
Logistic
regression was
used to derive a
statistical model
that derived a
decision rule for
differentiating
low-risk and
high-risk
patients.

Accurately
predicting
patients who
are at high risk
of pressure
injury requires
an
understanding
of clinical
characteristics
not previously
hypothesized
in studies
driven by
clinical
judgment.

25

Arora et al,
Value Health
2019

Bayesian
Networks for
Risk Prediction
Using Real-
World Data: A
Tool for
Precision
Medicine

Systematic
review

Population health EHR Predictive
analytics

Bayesian
belief network

Predictive
analytics for
precision
medicine.

Meaningful for
predictive
analytics—risk
prediction.

26

Liu et al, JAMIA
2012

Large-scale
prediction of
adverse drug
reactions using
chemical,
biological, and
phenotypic
properties of
drugs.

Cohort study Adverse drug
reactions

EHR Predictive
analytics;
causal
inference

Support
vector
machine;
cluster
analysis

Filtered notes,
added new
annotated data
for training the
ML classifier
(SVM with a
radial basis
function kernel),
and added rules
to the rule-based
classifier.

Smoking
detection
module in
cTAKES,
developed at
Mayo Clinic to
yield a
significantly
better classifier
in terms of the
F-measure on
a data set
obtained from
Vanderbilt
University.

27

Xu et al, AMIA
Annu Symp
Proc 2011

Extracting and
integrating data
from entire
electronic
health records
for detecting
colorectal
cancer cases

Cohort study Colorectal cancer EHR Cohort
selection

NLP Algorithm
combined ML
and NLP to
detect patients
with colorectal
cancer.

Their 2-step
method
extracted CRC
concepts from
clinical notes
followed by
determination
of CRC cases
using
aggregated
information
from
narratives and
billing data.

28

Sohn et al,
JAMIA 2011

Drug side effect
extraction from
clinical
narratives of
psychiatry and
psychology
patients.

Cohort study Mental health
disorders

EHR Cohort
selection

NLP System extracted
physician-
asserted side
effects from EHR
clinical narratives
of psychiatry and
psychology
patients.

Their system
leverages NLP
using cTAKES
along with
decision trees
(C4.5) using
side effect
keyword
features and
pattern-
matching rules.

29

continued on next page
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Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Birnbaum
et al, arXiv
e-Print 2019

MACS with bias
analysis for
generating
large-scale
cohorts from
the EHR for
oncology
research

NLP Oncology EHR Cohort
selection

NLP; logistic
regression

Flatiron Health
MACS trained a
model on 17 263
patients using
term-frequency
inverse-
document-
frequency and
logistic
regression. To
refresh models
and continually
test them at
scale, Flatiron
Health
developed model
integration,
monitoring, and
serving
architecture
(Mimosa) to
continually
monitor the
performance
and potential
bias of MACS
models in
production. It
trains and
evaluates new
models to adapt
to changes in
treatment
patterns,
documentation
patterns, and
Flatiron’s
network of
oncology clinics.

The algorithm
had an AUC of
0.976, a
sensitivity of
96.0%, and an
abstraction
efficiency gain
of 77.9%.

30

Hansen et al
Circulation:
Cardiovascular
Quality &
Outcomes 2016

Identifying
drug-drug
interactions by
data mining: A
pilot study of
warfarin-
associated drug
interactions

Random
forests

Patients
prescribed with
warfarin

EHR Feature
selection

Random
forests;
logistic
regression

Random forest
was set up to
predict altered
INR levels after
novel
prescriptions.
The most
important drug
groups from the
analysis were
further
investigated
using logistic
regression in a
new data set.

Identified
known
warfarin-drug
interactions
without a
previous
hypothesis
using clinical
registries.
Additionally,
the study
discovered a
few potentially
novel
interactions.

31

continued on next page
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Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Churpek et al,
Critical Care
Med 2016

Multicenter
Comparison of
ML Methods
and
Conventional
Regression for
Predicting
Clinical
Deterioration
on the Wards

Random
forests;
logistic
regression

Decompensation
among
hospitalized
patients

EHR Feature
selection;
predictive
analytics

Random
forests;
logistic
regression

Compared with
MEWS, authors
hypothesized
that random
forests or logistic
regression with
improved
feature selection
could improve
sensitivity and
specificity for
intervening with
hospitalized
patients at risk of
additional
decompensation.

In the
validation data
set, the
random forest
model was the
most accurate
model (AUC
0.80). The
logistic
regression
model with
spline
predictors was
more accurate
than the model
using linear
predictors
(AUC 0.77 vs
0.74; P ,.01),
and all models
were more
accurate than
the MEWS
(AUC 0.70).

32

Henry et al,
Science
Translational
Medicine 2015

A targeted real
time early
warning score
(TREWScore) for
septic shock

Cox
proportional
hazard
model

Hospitalized
patients at risk of
septic shock

EHR Feature
selection;
predictive
analytics

Imputation of
missing data;
LASSO
regression

EHR data
provided rich
information to
predict septic
shock risk.
Researchers
imputed missing
data to then
inform a LASSO
model on the
features that
best predicted
septic shock.
These features
where then fit to
a Cox
proportional
hazard model to
compute risk in
real time.

Increased
accuracy of
patients at risk
of septic shock
compared with
existing
models (eg,
MEWS
approach).

33

Ali et al,
Biophys Rev
2019

ML and feature
selection for
drug response
prediction in
precision
oncology
applications

Cluster
analysis

Bayesian
efficient
multiple
kernel
learning
method

Multiple
methods used to
explore
efficiency.

Compare ML
methods for
using genomic,
epigenomic,
and proteomic
data to predict
individual
response to
cancer drugs,
finding
superior
performance
of the Bayesian
efficient
multiple kernel
learning
model.

34

continued on next page
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Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Miotto et al, Sci
Rep 2016

Deep Patient:
An
Unsupervised
Representation
to Predict the
Future of
Patients from
the Electronic
Health Records

Deep
learning

Diabetes;
schizophrenia;
cancer

EHR Feature
selection;
predictive
analytics

Unsupervised
deep feature
selection

Unsupervised
deep feature
learning created
representative
archetypes of
patients from
high-dimensional
(. 40 000
variables) EHR
data, finding that
it improved the
ability to predict
occurrence of
future disease
and used that
information to
predict
development of
severe diabetes,
schizophrenia,
and several
cancers.

Created
representative
archetypes of
patients from
high-
dimensional
(. 40 000
variables) EHR
data.

35

Neugebauer
et al, Stat Med
2014

Targeted
learning in real-
world
comparative
effectiveness
research with
time-varying
interventions

Cohort study Diabetes EHR Causal
inference

TMLE with
super learner
marginal
structural
model

TMLE with super
learning used in
marginal
structural
models to adjust
for confounding
and selection
bias in causal
inference
pathway.

The causal
parameter of
interest is the
effect of
dynamic
treatment
strategies,
intensifying
medication
when blood
A1c level
reached
threshold. In
particular, the
authors
estimate the
cumulative risk
of a failure
event,
albuminuria,
under different
hypothetical
interventions.
The main
estimation
method used is
targeted
learning using
the super
learner, and an
increased
precision
of this
approach is
demonstrated
compared with
traditional
methods.
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Table 3. Continued

Publication Title Study
design

Health
outcome

Data
type

ML
approach

ML method
used

How ML was
applied.

Key findings Source

Kempa-Liehr
et al, Int J Med
Inform 2020

Healthcare
pathway
discovery and
probabilistic ML

Cohort study Appendicitis EHR Predictive
analytics;
economic
evaluation

Pathway
discovery;
probabilistic
regression
modeling

ML was used to
define clinical
care pathways
taken by patients
with
appendicitis.
Probabilistic
regression
predicted
potential
outcomes based
on variability in
patient pathway
and time to
successful
treatment.

Pathway
discovery can
reduce
variability in
care pathways
that increase
likelihood of
desirable
outcomes,
improve
clinical
scheduling,
and improve
patient
recovery time.

37

Liu et al,
Nature 2021

Evaluating
eligibility
criteria of
oncology trials
using real-world
data and AI

Cohort study Oncology EHR Cohort
selection;
feature
selection;
predictive
analytics;
causal
inference

MACS;
Shapley
values

To evaluate the
influence of an
individual
criterion, the
Shapley value
was used to
assess the
average
expected
marginal
contribution of
adding one
criterion to the
hazard ratio after
all possible
combinations of
criteria have
been considered.

With a data-
driven
approach to
broaden
restrictive
criteria, the
pool of eligible
patients more
than doubled
on average
and the hazard
ratio of the
overall survival
decreased by
an average of
0.05. This
suggests that
many patients
who were not
eligible under
the original
trial criteria
could
potentially
benefit from
the
treatments.

38

AI indicates artificial intelligence; AUC, area under the curve; CRC, colorectal cancer; cTAKES, clinical Text Analysis and Knowledge Extraction System; EHR, electronic
health record; HEOR, health economics and outcomes research; INR, interventional normalized ratio; LASSO, least absolute shrinkage and selection operator; MACS,
model-assisted cohort selection; MEWS, modified early warning score; ML, machine learning; NLP, natural language processing; TMLE, targeted maximum likelihood
estimate.
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clinical narratives of psychiatry and psychology patients,
leveraging NLP along with decision trees using side effect keyword
features and pattern-matching rules.

Cohort selection with ML still faces risk of selection bias. When
abstractors review patients above a threshold, specificity is
maximized (ie, there are few false-positives). Nevertheless, if the
algorithm produces a high number of false-negatives (ie, has low
sensitivity), then patients could be erroneously excluded from a
cohort. If these false-negatives are not randomly sampled, then
the resulting research cohort could be biased. The impact of bias
can be assessed by validating results from ML-generated cohorts
against results using manual abstraction-generated cohorts.

Cohort selection bias may also occur by race or ethnicity
traits.40 This is, at its core, an issue of utilization of healthcare
services by different populations that may be related to discrim-
ination or sociodemographic strata facing structural barriers to
healthcare access and use. Although there are no standard
solutions to the problem, stratification and weighting methods
may be helpful in overcoming such bias.
Feature Selection

The number of observations in many healthcare data sets,
combined with high dimensionality, creates challenges for re-
searchers by exceeding the threshold for analytics with classical
HEOR methods. Imbalances in these healthcare data sets such as
possessing far more predictors than observations—commonly
known as the large p, small n problem—further complicate analytic
tasks by increasing the risk of overfitting. Feature selection
methods can reduce the risk of overfitting and better estimate
some causal parameters such as average treatment effects (ATEs).

Classical statistical methods often fail in high-dimensional
data. For example, r-square in ordinary least squares methods



Table 4. Approaches to conducting feature selection.

Approach Description Considerations and examples

Filter Generate and evaluate the subset of variables without the
involvement of a model. normally used as a preprocessing step.
Does not leverage ML methods.

The advantage of using filter methods is that it is fast to set up
and run and has a low impact on computational memory. In
contrast, these methods are crude compared with wrappers
because they are limited to application on relatively smaller data
sets, the univariate techniques ignore dependencies, and there is
potential for the selection of redundant variables.48

Wrapper “Brute force” feature selection techniques. In wrappers, the
subset of variables is measured by the performance of the
model.

The advantage of wrappers relies on the fact that the subset
interacts with the classifier. Therefore, they have high prediction
performance because they are designed to maximize model
performance.47 In contrast, wrappers tend to overfit, are
computationally intensive, and need arbitrary stopping criteria.
Examples of wrappers include recursive feature elimination,
sequential forward selection, and genetic algorithms.

Embedded Propose and evaluate a subset of variables during the
construction of the model.

Historically common approaches in HEOR include ridge and
LASSO regression methods.

Hybrid Combine filter and wrapper approaches. Hybrid methods first apply filtering and then follow this with the
application of a wrapper method.

HEOR indicates health economics and outcomes research; LASSO, least absolute shrinkage and selection operator.
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approaches one as the number of features approaches the sample
size, but such models are unlikely to provide robust classifications
for new data for 2 reasons. First, when the counts of observations
and predictors are similar, ordinary least squares models will have
excessive variability and poor predictions. This case is apparent in
predicting outcomes associated with multiple gene expressions.41

Second, when encountering a large p, small n situation, the
resulting variance can be infinite. This commonly occurs when
evaluating n-of-1 trials, but also for data with high dimension-
ality.42 The curse of dimensionality refers to the fact that when the
dimensionality of the data increases, the available data become
sparse, resulting in high levels of missing data.43

To address these problems, feature selection identifies a subset
of the predictors for the analysis based on a balanced combination
of improvements in correlation and reductions in error. The
objective is to obtain an optimal classifier by using a minimal
number of features and excluding the redundant ones.44 In
contrast, feature extraction creates new features as a function of
other features and common methods for feature creation
including linear discriminant analysis, principal component anal-
ysis, autoencoders, and neural networks (see Table 2).45

Despite having less discriminatory power, feature selection has
the advantage over feature extraction in preserving the original
data.46 Other advantages include finding a more parsimonious
model, improving model generalization by limiting the risk of
overfitting and enhanced performance, avoidance of collinearity,
reduction in time and computational resources for model fitting,
allowance for a deeper insight into the underlying processes that
generated the data, increased probability of finding predictors in
real-world data, and safety surveillance for anomaly detection.
Most of the methods for feature selection rely on supervised data
with some techniques for unsupervised data, which will not be
covered here.47

Feature selection methods can be classified into 4 approaches:
filter, wrapper, embedded, and hybrid (Table 447,48).

There is a lack of consensus on the preferred methods con-
cerning performance, although there is a propensity for prefer-
ence of wrapper methods over filtering.47,49,50 Wrappers often
provide the best subset of variables compared with filtering
methods but are prone to overfitting. We recommend trying
multiple feature selection algorithms and evaluating what works
best for the specific problem of interest.

The Challenge of Missing Data

An underdeveloped area within feature selection is the
handling of missing data.51 There are 2 possible methods for
conducting feature selection in the presence of missing data:
feature selection and then imputation of missing values or
imputation of missing values before feature selection. The choice
of approach depends on the data being used for the feature se-
lection process; some techniques can handle missing data (tree-
based methods), but others are intolerant to missing data (Support
Vector Machine [SVM], Neural Network [NN], Generalized Linear
Modeling [GLMnet], etc).

The latter approach in imputing missing values before feature
selection is prone to imputation bias. In imputation bias, the
predictor becomes important after the imputation process (false-
positive).52 Therefore, the selection of the approach depends on
the purpose of your model (eg, inference or prediction). Our
recommendation for most HEOR scenarios would be to perform
feature selection after imputation given that the field of biosta-
tistics has introduced methods to impute or censor observations
with missing data. Nevertheless, the correct approach will depend
on the number of predictors and the computational capabilities,
type of problem, amount of missingness, and type of missingness.
Predictive Analytics

A core value of the ML predictive analytics approach is the use
of procedures for model construction to increase the accuracy of
out-of-sample prediction—often at the expense of explaining
variation in sample data.53,54 Predictive analytics is rooted in
statistical decision theory, where losses incurred by a decision
maker depend on how far predictions are from actual outcomes
when the algorithm is applied to new input data.55 In the context
of classification, we wish to “predict”whether or not an individual
belongs to an explicitly defined class (eg, diabetic) based on the
observation of related predictor variables (eg, age, body mass in-
dex, historical measures of blood glucose); losses are incurred for



Table 5. The PALISADE Checklist—key considerations for evaluating the transparency of ML to stakeholders and decision makers.

Element Definition

Purpose Is the purpose of the algorithm clearly stated at the outset? Is the implementation of the algorithm in a healthcare setting
fair and ethical?

Appropriateness Is there a clear justification that the algorithm is acceptable in the context within which it is being applied?

Limitations Have the strengths and limitations, in the context of the purpose, been identified? This should cover both the algorithm
and any data used.

Implementation Consideration of access, implementation, and resource issues when implemented in healthcare settings.

Sensitivity and
specificity

For classification algorithms, has the model performance and accuracy (specificity and sensitivity) been appropriately
evaluated?

Algorithm
characteristics

Has the ML mechanism been clearly characterized and described? Is there sufficient transparency for the results to be
reproducible?

Data characteristics Is the selection of data sets justified and are the key characteristics known? This should extend to training sets, test sets
and validation sets.

Explainability Are the outputs of the algorithm clearly understandable by both the healthcare professional and the patient?

ML indicates machine learning.
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false-positives (patient is predicted to be diabetic when not) and
false-negatives (patient is predicted not to be diabetic when they
are).

The relative consequences of false-positives and false-
negatives can be explicitly set using a loss matrix, steering the
final algorithm more toward sensitivity or specificity. In the
context of regression, we wish to predict the occurrence (binary,
multinomial) or magnitude (continuous) of an outcome: for
example, “will this patient respond or not respond to treatment
given a profile of SNPs and biomarkers?” or “how much will this
patient’s treatment episode cost given multiple demographic
characteristics, measures of disease severity, and functional
performance?”

Losses are incurred when more or fewer outcomes are pre-
dicted than actually occur, as in the log-loss or Brier score metrics,
or when the magnitude of a continuous outcome is more or less
than its prediction, as in absolute loss (L1) or squared loss (L2)
metrics. A core feature of predictive analytics then is to system-
atically explore large model spaces (including many potential
predictor variables, functional forms, interactions, etc) and select
one or more models from that space to generate predictions that
minimize loss because of inaccuracy.

In predictive analytics, the algorithm is “trained” on an avail-
able sample of data but its performance is assessed on data not
used in the training. The most common approach is n-fold cross-
validation, which involves partitioning a subset of all of the
available data into a training subset fraction (N-1)/N and a vali-
dation fraction (1/N) and repeating the process N times so that
each observation is in the training subset N-1 times and in the
validation subset once. An algorithm is then run to fit the observed
outcomes or labels in the training subset. Each algorithm may
have embedded within it a method for selecting predictors,
functional forms, and interactions (see feature selection section)
and is typically controlled by a set of parameters governing vari-
able selection, model construction, and overall complexity.

Predictions are then generated by applying predictors for ob-
servations in the validation subset to the algorithm estimated
on the training subset. In the single-model approach, the predic-
tion is the result of running the predictor variables for observa-
tions in the validation set through the single best-fitting model
equation. In the ensemble approach, a set or sequence of models is
generated, often using bootstrapped resamples of the training
data (sometimes upweighting observations that were poorly
predicted in previous iterations) and randomly selected subsets of
predictors.56

A consensus prediction is generated by running the validation
subset of observations through the ensemble of models to obtain
multiple predictions and typically selecting the mean or median
or last prediction. Performance of the algorithm is assessed by
applying the loss metric to the generated predictions and the
corresponding true values. Generally speaking, performance var-
ies depending on the parameters used in the algorithm to explore
the model space and select one or more models. These parameters
can be “tuned” (rerunning the cross-validation procedure with
different parameter values) to yield the best performance in the
validation subset (or average of the multiple validation subsets in
the case of cross-validation and repeated cross-validation).

Final performance of the optimally tuned algorithm can then
be assessed by applying the loss metric to a holdout test subset
that was not used for algorithm generation or tuning. For true
external validation, the tuned algorithm should be applied to a
new set of data from a different source.57 If practiced carefully and
transparently, predictive analytics can offer a rigorous and
reproducible approach to modeling, particularly with “big data”
where the number of potential predictors can be enormous.

Why is the HEORfield investing somuch effort in developing and
applying new methods to make predictions? First, accurate pre-
dictionshave high stakes: involving life, death, health-related quality
of life, and trillions of dollars of expenditures. To maximize the value
of healthcare, a system must deliver the right interventions to the
right individuals at the right time and in the right setting. Better
predictions are necessary for better decision making.58

Second, the “big data” revolution is itself a major driver of
innovation in prediction methods in healthcare.43 The amount of
data generated on a continual basis in the course of healthcare
delivery and in daily life (eg, through mHealth applications and
geo-tracking) go far beyond what we have traditionally seen in the
EHR. As the cost of processing and storing biometric, imaging, and
genomic (and other -omics) data has fallen, their potential for
practical use in predicting health outcomes and improving the
value of healthcare has grown. Numerous efforts have boot-
strapped themselves seemingly out of the desire to create value by
mining these new—and often voluminous and messy—data
resources.59,60
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Third, HEOR practitioners are increasingly aware that tradi-
tional predefined, single-model approaches designed for expla-
nation may be less than optimal for prediction.61 Prioritizing
unbiasedness of parameter estimates over predictive accuracy is
important for research based on hypothesis testing. Predictive
analytics attempts to reconcile the realities of the “bias-variance
tradeoff” to find the optimal degree of model complexity that
minimizes losses caused by inaccurate predictions.1 As a field that
routinely practices decision analysis for economic evaluation,
HEOR practitioners should find the grounding of the predictive
analytic approach in statistical decision theory appealing; the
more accurately the field is able to predict health outcomes into
the future, the more informed are the economics of decision
making in the long run for investment purposes.

The algorithms typically used in predictive analytics often
mimic processes of biological learning—the most common being
supervised learning where feedback for models is obtained and
acted upon based on the deviation between predicted and
observed outcomes (or classifications/labels).62 Recently, an
increasing number of applications are using the process of self-
organized (unsupervised) learning—searching for patterns of as-
sociation in data without an explicit outcome or classification.35
Causal Inference

In contrast to the objectives of predictive analytics, causal
inference asks questions about the effects of interventions or
policies.63,64 The “fundamental problem of causal inference” is
that for each individual we only observe the outcome corre-
sponding to the treatment actually received, but not the one
corresponding to another potential treatment of interest (eg, if the
individual had not been treated). Hence, estimating causal pa-
rameters always relies on crucial, untestable assumptions.65 A
commonly made assumption is that all the covariates that influ-
ence treatment assignment and are prognostic of the outcome
have been observed.66

ML can play a role in selecting potential confounders, for
example, by prescreening of covariates based on variable impor-
tance in the outcome model (see Feature selection section) or by
using variable selection approaches designed specifically for
causal inference.67,68 Nevertheless, these approaches cannot
replace formal causal reasoning (using, eg, directed acyclic graphs)
and subject matter knowledge.69 Sensitivity analysis approaches
are increasingly recommended to assess how sensitive estimates
of causal effects are to the presence of potential unobserved
confounders.70

Causal inference in HEOR is often performed by fitting pro-
pensity score (PS) models to create matched samples and estimate
ATEs by comparing these samples.13,71 Although logistic regres-
sion is often used to fit PS models, it has been shown that “off the
shelf” ML methods for prediction and classification (eg, random
forests, classification and regression trees, least absolute shrinkage
and selection operator) are more flexible and can lead to lower
bias in the treatment effect estimates.12 Nevertheless, these ap-
proaches in themselves are imperfect given that they are tailored
to minimize root mean square error as opposed to targeting the
causal parameter.

Some extensions of these methods have addressed specific
challenges of using the PS for confounding adjustment, by
customizing the loss function of the ML algorithms (eg, instead of
minimizing classification error, to maximize balance in the
matched samples).72 Nevertheless, the issue remains that giving
equal importance to many covariates when creating balance may
not actually minimize bias (eg, if many of the covariates are only
weak confounders). It is recommended that balance on variables
that are thought to be the most prognostic to the outcome should
be prioritized; nevertheless, this ultimately requires subjective
judgment.73

An approach specifically designed to overcome this challenge
is targeted maximum likelihood estimation (TMLE), also called the
targeted minimum loss–based method.74,75 TMLE was originally
developed as a doubly robust approach—a method that gives
unbiased estimates of treatment effects if at least one of the PS or
outcome regression models is correctly specified—without the
consideration of ML. Nevertheless, because of the complexity of
trying to specify the exposure and outcome mechanisms, it was
seen as optimal to use ML when implementing TMLE.

The super learner is an ensembling ML approach that is rec-
ommended to be used with TMLE to help overcome bias because
of model misspecification.63,76,77 Super learning can draw upon
the full repertoire of ML and traditional econometric/epidemio-
logical methods and produce estimates that are asymptotically as
good as the best performing model—eliminating the need to make
strong assumptions about functional form and estimation method
up front.77 TMLE can be used to estimate ATEs, but also more
complex causal parameters such as the impact of longitudinal
interventions such as dynamic treatment regimens (see Kreif
et al24 and Neugebauer et al36 in Table 35,15-38).

In an approach similar to TMLE, double/debiased ML estima-
tors use ML to obtain estimates of the PS and outcome regression
and combine these using an augmented probability weighted
score equation, using sample splitting—estimating the nuisance
parameters on different parts of the sample than the treatment
effect—to guarantee good asymptotic performance.78,79

To meet the needs of HEOR researchers interested in person-
alized medicine, the causal ML methods introduced earlier can
also estimate heterogeneous treatment effects.80-83 These ap-
proaches are particularly promising for HEOR because they can
potentially inform individualized treatment decisions (“who to
treat”) by learning granular treatment effects down to the indi-
vidual level.84 A related set of approaches uses ML to directly learn
the optimal treatment allocation rule.84,85
Economic Evaluation

Health policy and regulatory agencies have vocalized concerns
about the use of economic evaluation (eg, cost-effectiveness
analysis) for resource allocation of new healthcare services and
biomedical technologies in real-world settings given the vast
amount of uncertainty and assumptions economic models
entail.86 Although the minimization of bias through trial-based
evidence generation remains a gold standard to gain under-
standing about clinical benefit and comparative effectiveness,
randomized-controlled trials often fall short of expectations in
HEOR by their inability to represent real-world outcomes to
generate the necessary parameters to fulfill the needs of economic
models.87

Health economic models need to better address the complexity
of care delivery by accounting for health service delivery con-
straints that affect timely delivery such as in cases of reduced
capacity.88 Economic modeling faces an array of uncertainties,
including parameter uncertainty, structural uncertainty, and
sampling uncertainty.89

Parameter Uncertainty

Economic modeling often depends on a patchwork of data
parameters from multiple sources that reduce internal model
validity. Using a single database, such as EHR and administrative
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data to inform probabilities of clinical outcomes and endpoints
and the real-world costs of healthcare, could improve upon
existing methods of parameter abstraction. ML methods could
help to appropriately mine and select features that meet model
needs in terms of relevancy and accuracy. Nevertheless, the
generalizability of the results would also depend critically on the
patient populations represented in the data.

Structural Uncertainty

Studies such as the Dartmouth Atlas have demonstrated that
routine clinical practice is characterized by substantial variability
rather than guideline-based care.90 Combining big data with
concepts in predictive analytics could facilitate enhanced structure
of economic models that encompass more practice variability in
healthcare. This would enable models to control for common in-
efficiencies that would not be accounted for if they only portrayed
guideline-based care. Sequencing and unsupervised clustering
methods offer a starting point to inform model structure based on
the common order of events that patients experience in a clinical
care pathway, either through observation or imputation.91

Furthermore, ML could enhance the ability for models to accu-
rately reflect outcomes over longer terms horizons if the data are
calibrated to prespecified time horizons.

Sampling Uncertainty

Sampling uncertainty stems from the lack of available or
representative observations from existing data sources. Cohort
selection methods empowered with NLP could support economic
modeling approaches by mining data on a wider range of in-
dividuals who experience real-world outcomes in healthcare that
are pertinent to the economic research question. When health
outcomes classify as rare events, feature selection methods can aid
in expanding on n-of-1 samples to reconfigure economic models
to reflect the predictors and endpoints most reflective of health
outcomes on a case-by-case basis. In turn, these methodologies
offer the field a pathway to more efficient subgroup analysis by
drawing diverse observations from which outcomes can either be
classified or imputed based on common population-based trends
within a contiguous database.
Transparency and Explainability

Transparency is not just desirable but a necessary requirement
of decision making in healthcare.92 Key decision makers—regula-
tors, health technology assessment bodies, and payers—are
increasingly embedding elements of transparency in their oper-
ating models, such as providing access to documents and data on
which decisions are based.93-95

Transparency is especially important in the context of ML. The
“black box” nature of some ML algorithms (such as deep learning),
combined with potentially flawed training sets, may sometimes
introduce unintended biases.96-98 In many cases, these biases
reflect patterns in the data stemming from healthcare disparities
in access or treatment and wasteful or potentially harmful clinical
care.40

The application of ML can straddle the whole spectrum from
exploratory to hypothesis testing work. The ethical and trans-
parency requirements will be influenced by this, and applications
toward hypothesis testing and clinical decision making will
require greater transparency and scrutiny.99 Ultimately, explain-
ability (ie, the extent to which methods and results can be un-
derstood by humans) is important to healthcare decision makers
and patients. Explainability varies with different methods (Fig. 1);
nevertheless, explainability cannot be achieved unless developers
are as transparent as possible about methods and execution of ML.

ML is a rapidly evolving field. Several new reporting guidelines
and standards have recently appeared, calling for increased
transparency around methods, model parameters, and more spe-
cifics on training, test, and validation cohorts and standards in the
testing of these models in clinical scenarios.100-103 One area that
has not received adequate attention is that of transparency in the
application of ML. The TRIPOD-AI and PROBAST-AI reporting
standards provide an important structure for reporting that de-
velopers of ML should adhere to.104

Nevertheless, the stakeholder communities, such as HEOR
practitioners, healthcare decision makers, and patients, who are
often not experts in ML may have broader concerns about the use
of ML in healthcare. As a consequence, this task force has identi-
fied key elements in the “PALISADE” Checklist. The checklist pro-
vides prompts that developers of ML can use to structure their
thinking about how the appropriateness of ML methods can be
communicated to stakeholders and healthcare decision makers
(Table 5).

Methods in ML That Could Add or Detract From
Transparency

Regulators are increasingly asking that decisions made by
automated means can be explained and justified. As an example,
the 2018 European Union General Data Protection Regulation
stipulates the “right to explanation” of decisions from algo-
rithms.105 The ease with which ML outputs can be explained
varies between classes of methods according to their complexity
(and performance) and explainability (Fig. 1). Simpler approaches
including tree-based methods or gradient boosting machines
enable an external auditor to see exactly how the decision prob-
lem is being assessed. Conversely, more complex algorithms
including neural nets involve so many layers of interactions
among model parameters that any intuitive interpretation is
hopeless.106

The Healthcare Decision Makers’ Viewpoint of ML
Technologies

There are emerging signs that decision makers including reg-
ulatory, health technology assessors, payers, and providers are
considering ML and developing assessment frameworks.107-116

There is an ongoing debate about who is responsible for recog-
nizing and assessing elements relating to safety, quality, efficacy,
effectiveness, and appropriate system implementation. Therefore,
a multiagency/multistakeholder approach may be useful.

Unlike the single approval process for medicines, a more iter-
ative process of monitoring may also be required. This is due to the
uncertainty of performance over time, potential ethical issues that
may arise, and the sometimes-evolving nature of both an algo-
rithm and its implementation in practice. Given the impact and
sensitivities of ML, the decision maker space should be extended
beyond the regulators to include a dialog with patients and
society.
Discussion

Potential applications of ML methods in research are numerous
and can augment the scientific methods of HEOR. All HEOR ob-
jectives start with a research question. Whatever the question
may be, ML cohort selection methods can help researchers to
identify study samples from big data that are pertinent to the
investigation.
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Feature selection methods can support HEOR by refining the
list of exposure variables to those that have strong associations
with clinical or economic outcomes of interest. Feature selection
cannot replace the generation of hypotheses that HEOR studies
might establish with subject matter experts, but it can comple-
ment expected exposures and identify more for further
investigation.

The use of ML has the potential to more efficiently curate
complex data to be used in a variety of different types of HEOR
models. This could certainly benefit economic modelers, whose
efforts are often questioned based on the wide-ranging uncer-
tainty and assumptions of such models. ML models complement
other emerging HEOR methods such as dynamic simulation
models and constrained optimization models.88,89,117 For example,
there is an increasing interest to adopt patient-level dynamic
simulation models in precision medicine, to model optimal
treatment pathways for individual patients.118,119

A challenge that the field of ML will need to overcome is
educating clinicians so that they can better understand what ML
methods produce and why they should be trusted.120 There will
remain an ongoing balance between using the most rigorous
method fit for purpose of the data and research question, com-
bined with consideration for what clinicians and patients are
comfortable adopting.

A related issue is the danger that ML algorithms can reinforce
bias in healthcare delivery. Underserved populations, by defini-
tion, have less representation in healthcare databases. ML algo-
rithms inherently reinforce these patterns in their algorithms.
This is an extremely difficult problem to overcome. At a mini-
mum, decision makers using ML coupled with clinical data need
to be aware of the potential for bias and proactively seek to
overcome it.

Consistent with the criteria for developing ISPOR Good Prac-
tices in HEOR, this task force established important general con-
siderations to evaluate the transparency of ML models to support
HEOR, which can be found in the PALISADE Checklist.121 More
collaboration between communities of HEOR scientists and com-
puter scientists with ML expertise is encouraged to more rapidly
enable learning from each other. Given that the use of ML con-
tinues to expand, trust in ML methods will depend on trans-
parency in reporting and advancement in validation techniques to
ensure that methods are reproducible.
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